- 1. The trapezoidal method $u_{n+1} = u_n + \frac{1}{2}h(u'_{n+1} + u'_n)$ is used to solve the ODE $u' = \lambda u + a$ numerically.
 - (a) What is the resulting $O\Delta E$?
 - (b) What is its exact numerical solution?
 - (c) How does the exact steady state solution of the O Δ E compare with the exact steady state solution of the ODE (Hint:The exact SS solution is $u(t \to \infty) = -\frac{a}{\lambda}$)?
- 2. Consider the ODE

$$\mathbf{u}' = \frac{d\mathbf{u}}{dt} = [A]\mathbf{u} + \mathbf{f}$$

with

$$[A] = \begin{bmatrix} -10 & -0.1 & -0.1 \\ 1 & -1 & 1 \\ 10 & 1 & -1 \end{bmatrix} \quad , \quad \mathbf{f} = \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix}$$

- (a) Find the eigenvalues of [A] using Matlab. What is the long time Steady State (SS) solution \mathbf{u} ? How would the ODE solution behave in time? (Hint: Remember the $e^{\lambda t}$ form of ODE solutions.)
- (b) Write a Matlab code to integrate from the initial condition $\mathbf{u}(0) = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ from time t = 0

for the three time advance schemes $(h = \Delta t)$

- i. $u_{n+1} = u_n + h(u')_n$ the Euler Explicit Scheme
- ii. $u_{n+1} = u_n + h(u')_{n+1}$ the Euler Implicit Scheme
- iii. $u_{n+\frac{1}{2}} = u_n + h(u')_n$; $u_{n+1} = u_n + \frac{1}{2}h\left((u')_{n+\frac{1}{2}} + (u')_n\right)$ the Predictor-Corrector Scheme

In all three cases use h = 0.1 for 1000 time steps, h = 0.2 for 500 time steps, h = 0.4 for 250 time steps and h = 1.0 for 100 time steps. Compare the computed SS solution with the exact SS solution.

- (c) Could you have predicted the behavior of the previous problem? In class we developed the $\sigma \lambda$ relations for these methods.
 - i. For the Euler Explicit Scheme: $\sigma = (1 + h\lambda)$.
 - ii. For the Euler Implicit Scheme: $\sigma = 1/(1 h\lambda)$.
 - iii. For the Predictor-Corrector Scheme: $\sigma = (1 + h\lambda + \frac{1}{2}(h\lambda)^2)$.

The stability condition is $|\sigma| \leq 1.0$. For the Euler Explicit scheme what is the predicted stability limit on h and is it confirmed by your Matlab code? (Hint: Try running just below and above the limit, also use the eigenvalues from 2(a) in the stability check).

3. The "backward differentiation" scheme is given by

$$u_{n+1} = \frac{1}{3} \left[4u_n - u_{n-1} + 2hu'_{n+1} \right]$$

- (a) Write the O Δ E for the representative equation $u' = \lambda u + ae^{\mu t}$. Indentify the polynomials P(E) and Q(E).
- (b) Derive the $\lambda \sigma$ relation. Are there multiple roots and if so identify the spurious ones.
- (c) Find er_{λ} .
- (d) Find the first two nonvanishing terms in a Taylor series expansion of all the spurious roots.

4. Consider the time march scheme given by

$$u_{n+1} = u_{n-1} + \frac{2h}{3}(u'_{n+1} + u'_n + u'_{n-1})$$

- (a) Write the O Δ E for the representative equation $u' = \lambda u + a$. Indentify the polynomials P(E) and Q(E).
- (b) Derive the $\lambda \sigma$ relation.
- (c) Find er_{λ} .
- 5. Consider the predictor-corrector combination

$$\tilde{u}_{n+1} = u_n + hu'_n
u_{n+1} = \alpha_1 u_n + \alpha_2 \tilde{u}_{n+1} + \beta h \tilde{u}'_{n+1}$$

- (a) Find the values of α_1 , α_2 and β that minimize er_{λ} .
- (b) Using this method, find the exact numerical solution to $u' = \lambda u + ae^{\mu t}$. Do not expand to find er_{μ}